|
In mathematics, each closed surface in the sense of geometric topology can be constructed from an even-sided oriented polygon, called a fundamental polygon, by pairwise identification of its edges. This construction can be represented as a string of length 2''n'' of ''n'' distinct symbols where each symbol appears twice with exponent either +1 or −1. The exponent −1 signifies that the corresponding edge has the orientation opposing the one of the fundamental polygon.〔Alan F. Beardon, ''The Geometry of Discrete Groups'' (1983), Springer-Verlag, New York. ISBN 0-387-90788-2.〕〔Hershel M. Farkas and Irwin Kra, ''Riemann Surfaces'' (1980), Springer-Verlag, New York. ISBN 0-387-90465-4.〕〔Jurgen Jost, ''Compact Riemann Surfaces'' (2002), Springer-Verlag, New York. ISBN 3-540-43299-X.〕 ==Examples== * Sphere: or * Real projective plane: or * Klein bottle: or * Torus: or 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「fundamental polygon」の詳細全文を読む スポンサード リンク
|